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On the use of the ring current concept
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The concept of ring currents is commonly used to interpret and calculate
the magnetic susceptibility and the N.M.R. spectra of conjugated hydrocarbons.
Controversy over the theoretical soundness of its use has led both theoretical
and experimental chemists working in the field to the rather uneasy situation of
frequently using a concept suspected of being totally unnecessary and non-
physical.

The idea that an external magnetic field might induce a ring current in a
molecule like henzene was introduced in a classical context by Ehrenfest [1]
and Pauling [2]. However, the extensive use of ring current ideas originated
from London’s [3] approximate quantum mechanical method of calculation of
the magnetic susceptibility, in which a basis set of field dependent orbitals,
the so-called gauge invariant atomic orbitals (GIAQO), was used. Later, methods
of calculating magnetic susceptibilities and N.M.R. chemical shifts were de-
veloped [4-6] which still made use in different ways of those early ideas. In
these and modified theories, the concept of ring current plays an important,
more or less explicit, role ; it has been a very useful instrument in the under-
standing of the magnetic properties of conjugated molecules.

A major criticism of the use of the ring current concept was put forward by
Musher [7] who argued that the supposed ring current contribution to the
magnetic susceptibility could equally well be ascribed to the sum of the suscepti-
bilities of electrons localized in non-overlapping segments of the ring. It is
claimed [8] that localized anisotropic contributions and ring current contribu-
tions are one and the same.

Although many authors have given attention to Musher’s argument in favour
of localized models, the most pertinent comments so far appear to be those of
Gaidis and West [9] together with the subsequent reply {10]. These do not
seem to have fully answered the difficulties and most authors keep to their
traditional use of ring current but with a non-committal note of cation. Calcula-
tions by Nowakowski [11] on several polycyclic conjugated hydrocarbons point
towards the use of ring currents as a more effective tool than the concept of
increments. However, in a recent series of papers, Blustin [12, 13] uses a
localized model with great success to calculate both the magnetic susceptibilities
and the chemical shifts of a variety of benzenoid hydrocarbons.

It is the purpose of this note to help in clarifying this problem by showing
that Musher’s [7] comparison between localized and delocalized models is
fallacious and that a model making use of local (atom or bond, say) magnetic
susceptibility anisotropies cannot give a full description of the magnetic properties
of the molecule. Since general theoretical arguments lead to the prediction of a
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non-zero, appropriately defined, ring current, the conclusion is reached that the
use of ring currents as an intuitive simple way of describing some of the effects
of a magnetic field on monocyclic or polyeyclic conjugated molecules, is quite
appropriate.

Musher [7] compared two related model wavefunctions for a cylindrically
symmetric problem. The first (a) (figure 1) may be thought of as a torus-like
distribution of probability amplitude while in the second () (figure 1} a proba-
bility amplitude similar to the previous one is given to each of the four quadrants,
one electron being attributed to each.
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Figure 1. Model wavefunctions for the delocalized (a) anu wocalized {b) models of Musher.

For a model wavefunction to make sense, there must be some physical model,
in the present case of one-electron functions, a one-electron potential, which can
be associated with it. It is easy to think of physically acceptable constraints
which will result in a wavefunction of type (¢). Some more care is needed with
(). Considering each of the quadrants individually, there must exist an infinite
barrier forcing the electron to stay in that quadrant. If the potential barrier is
assumed to be continuous, it defines the third model (¢) (figure 2). When this
potential is taken to the limit of an infinite square well (within each quadrant)
the wavefunction will satisfy the boundary conditions postulated in (b).
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Figure 2. Model for a potential function which is cununuous inside each quadrant and
of the wavefunction associated with it.
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Let us now consider the pattern of currents induced by a perpendicular
magnetic field, Models (&) and (¢) satisfy the general conditions under which a
current density can be properly defined [14]; this current density satisfies the
continuity equation. Figure 3 suggests the sort of pattern of currents to be
expected. When model (c) is taken to the limit to generate model (4), the
continuity equation will be satisfied by allowing for surface currents in the
planes dividing the quadrants. Allowing now for the cancellation of these
surface currents in the planes shared between quadrants, we get a pattern of
currents as drawn in figure 3 (b). Patterns (2) and (b) are different, showing
the fundamental difference between the two models. The patterns of electronic
currents shown in figure 3 are indicative of the sort of current fields allowed by
fundamental principles, and these must be satisfied whatever the details of the
model systems are. Working with non-physical wavefunctions [7] may lead to
nen-physical conclusions which should be discarded if we are interested in
understanding the behaviour of actual physical systems.
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Figure 3. Pattern of currents induced by an external magnetic field in models (a), ()
and {c).
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On the strength of the argument produced above, it cannot be claimed that
localized or delocalized models lead to the same predictions. No net current is
predicted to flow around the ring in (b) in contrast with the prediction for {(a).

For our discussion, we shall consider the ring current to be measured by
the net flow of the electronic current around a ring. This is computed by
the flux of the current density vector across a semi-infinite plane from the axis
of the molecule. 'This definition is independent of the methods or approxima-
tions which in the past have been used to estimate ring currents. For polycyclic
molecules more care is needed in defining the surface across which the current
density flux is measured, but the situation is not fundamentally different.
Classically, a current is expected to flow in a non-resistive ring of radius R
under the effect of a perpendicular magnetic field B, provided no potential barrier
higher than (e? B2 R?/8m) is introduced. Quantum mechanically the problem
is not so simple as the calculations by Baer et al. [15], on a one-dimensional ring
model show. For our purposes here, the important new feature is that the
condition on the potential barrier must be relaxed ; any finite potential will, in
principle, gllow a current to flow. In an actual molecule the current density
field is, of course, very complex and the ring current as defined above measures
only one of its aspects. As no lower bound has been given for this ring current,
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it is not possible to give, in general terms, an estimate of the importance of its
contribution to the molecular properties. However, it should be realized that
its effects capnot be completely described by any model of local susceptibilities
for, at short distances from the ring, the ring current secondary field cannot be
simulated by a dipolar field.

Discussion of the numerical results available in the literature is not easy as
no good ab initio calculations are available, even for a relatively small system such
as benzene.. Estimates of the 7 electron ring current as defined above, with the
conventional GTAO basis functions [14] or the related integrated currents [16],
correlate well with the more conventional ring currents as calculated by the
Hiickel-London-Pople-McWeeny method [3-6, 17].

Musher [7] uses magnetic susceptibility increments which depend on
whether or not a carbon atom is shared. When application of this method is
restricted to the magnetic susceptibilities of benzenoid hydrocarbons, it allows
for an even distribution of the eventual ring currents effects among the six
carbon atoms in each ring. This is suggested by the values actually used, with
x(C), x* (unshared C) and x* (shared C} increasing by steps of about 0-11 x
10-¢ m?® mol-1; in fact one-sixth of the = electron magnetic susceptibility xt
was estimated [16] to be 0-10x 10-® m® mol™*, A similar comment may be
made about the increments used by Blustin [12]; the difference between the
internal and external bond anisotropies is 0-12 x 10~ m® mol~%.  But the crucial
test cannot be made with the magnetic susceptibility which samples equally
the entire molecule. N.M.R. chemical shifts, sampling the magnetic field
focally, can, in principle, measure the importance of ring currents against the
local currents described by susceptibility anisotropies. 'The results reported by
Blustin [13], however impressive, cannot alone be taken as conclusive of the
irrelevance of the ring current effects. One has to consider that only benzenoid
hydrocarbons were used in the test and it is in non-benzenoid molecules that
more disparate ring currents have been predicted. Moreover, one great success
of the ring current concept has been in explaining the down- (up-) field shifts
observed for outer (inner) protons of [4n+2]-annulenes and reverse effects in
[4n]-annulenes [18]. It seems unlikely that Blustin’s local anisotropy model
will perform equally well in these cases. From the general arguments given
earlier, it should also be clear that the ab initio localized orbital theory 191,
which suggested the localized models of Blustin {12, 13], does not preciude the
existence of a ring current. Estimates of it have not been published however.

From the discussion above the conclusion may be drawn that 2 magnetic ring
current is expected to exist in cyclic molecules and the description of the magnetic
effects cannot be complete in terms of local susceptibilities alone. With the
currently available data, there are no reasons to believe that semi-empirical
conventional estimates of ring currents are not representative of their actual sizes
and it is therefore correct to use them in interpreting or predicting magnetic
properties. Doubts that may remain about the magnitude of the ring current
contributions can only be answered when reliable ab initio calculations become
available and this, for benzene say, should be feasible using modern facilities.

The author is indebted to Dr. P. W. Atkins and Dr. R. B. Mallion for the
very fruitful discussions on the subject reported here. Financial support from
I.N.I.C. (Lisbon) is acknowledged.



Research Notes - _ 769

REFERENCES

{11 E=renrEsT, P., 1925, Physica, 5, 388.
12} PauriNg, L., 1936, ¥. chem. Phys., 4, 673.
13] Lonnon, F., 1937, ¥. Phys. Radium, Paris, (7%), 8, 397 ; (a} 1937, C. r. hebd. Séanc.
Acad. Sci., Paris, 205, 28 ; (&) 1937, F. chem. Phys., 5, 837.
4] Portig, J. A., 1958, Molec. Phys., 1, 175. :
[3] Wavcs, J. S., 1958, ¥. Am. chem. Soc., 80, 6697.
[6] McWEeenNY, R., 1958, Molec. Phys., 1, 311
[7] MusHER, J. 1., 1965, ¥. chem. Phys., 43, 4081.
[8] Musner, J. 1., 1966, Adv. magn. Reson., 2, 177.
[9] Gamnis, J. M., and WesT, R., 1967, . chem. Phys., 46, 1218.
[10] MusHER, J. 1., 1967, 7. chem. Phys., 46, 1219.
[11] Nowakowski, ., 1968, Theor. chim. Acta, 10, 79.
[12] Brustin, P. H., 1978, Aolec. Phys., 36, 1441
[13] Buustmx, P, L., 1979, Chem. Phys. Lett., 64, 507.
[14] ATrmvs, P. W., and Gonzs, J. A, N. F., 1976, Molec. Phys., 32, 1063.
[15] Barr, F., Koy, H., and Recer, W., 1967, Z. Naturf. A, 22, 103.
1161 Cowvison, C. A, Gomss, J. A, N. F,, and Marriox, R. B., 1975, Molec. Phys., 30, 713.
1177 Marrion, R B., 1973, Molee. Phys., 25, 1415,
18] Hess, B. A., Ia., Scmaan, L. J., and Nakacawa, M., 1977, ¥. org. Chem., 42, 1669.
1191 Buustiy, P. H., 1978, Molec. Phys., 36, 279,



	1
	2
	3
	4
	5

